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Abstract—A method is considered for detecting and predicting the abnormality in operation of power unit
equipment by an example of a gas-turbine unit (GTU). A problem of detecting abnormality in operation is
formulated as the mathematical problem of modeling an abnormality criterion taking the values from 0 to 1.
It has been assumed that the predictive analytics methods can be effective for predicting the future state of
process equipment based on the existing scope of measurements without any increase. It is assumed that, even
when each individual measurement is within the range taken as the range of normal functioning, their cumu-
lative dynamics enables us to judge a developing defect, i.e., about the transition of the diagnosed process
equipment (DPE) to the zone of abnormal operation. To solve this problem, an approach is proposed based
on calculating the value of the “abnormality indicator,” which can be interpreted as a conditional potential
created by points in a multidimensional space of indicators that characterize the state of equipment at the
given time. By learning the model against the indicators that set the regions of states (the state of normal oper-
ation and the state for various kinds of fixed defects), one can then apply the trained model to determine the
type of state: the closer the value of the abnormality indicator to the values inherent in a particular region of
functioning, the greater the probability that the state of DPE corresponds to this region. It is shown that, due
to certain objective circumstances, there is no practical possibility of training the model against the data
obtained during abnormal operation with specific types of defects in DPE. This reduces the problem to
adapting the method to the case when we have only the region of normal operation for learning the model.
The proposed model was trained and tested during normal operation of the equipment. The test results indi-
cate that the proposed method is consistent (i.e., it does not yield false positive response).
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regions of normal and abnormal operation, state space, functioning indicators
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In operating process equipment, events (accidents)
that may adversely affect it or cause its failure inevitably
occur. A model able to predict a future emergency
would make it possible to timely take measures for elim-
inating it, thus helping to achieve more efficient use of
process equipment. Development and investigation of
such models is the subject of predictive analytics [1, 2].

The main idea of predictive analytics in the power
industry, according to the authors, is that the occur-
rence of an accident may be predicted with some prob-
ability based on a continuous analysis of a set of data
that characterize the functioning of the diagnosed
equipment and are measured by standard monitoring
instruments.

To determine the state of process equipment, vari-
ous classification methods are used [3] that are based
on multiclass and one-class classification.

The main idea of methods based on multiclass clas-
sification is to build classifiers of normal and abnor-
mal data. Some examples of these methods include:

1. Neural network classifiers [4];
2. Statistical classifiers, in particular the Bayesian

approach, analysis of distributions (as applied to the
equipment of a power unit, it is studied in [5, 6]);

3. Machine learning (decision trees, SVM, etc.) [7].
Methods in which learning is based on precedents,

able to diagnose specific types of accidents, but their
main drawback is the complexity, and often the fact
that data on defects and accidents that have occurred
at the power unit, cannot be obtained. Therefore, from
the standpoint of initial detection of possible devia-
tions in the state of process equipment, the application
of methods whose training does not require data on
precedents seems advantageous.

The main idea of methods based on the one-class
classification is to build boundaries of the region of
normal data. All the data beyond this region are con-
sidered abnormal. Examples of such methods include:

1. Neural network classifiers (autoencoders, etc.) [8];
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2. Machine learning (one-class SVM, one-class
Fisher Discriminant, MSET [9], etc.).

However, the above methods are rather difficult to
implement while they feature a high ambiguity of the
result for power equipment.

The predictive diagnostics, which is focused on a
single-class classification, can lead to technically
incorrect results of the analysis of a specific case since
increasing the distance of these data on this case from
the boundaries of a known (previously determined)
region of normal operation will not necessarily be an
entry into the real region of abnormal data and,
accordingly, a warning about an emergency. This may
be an entry in a normal region that has not yet been
recorded. Therefore, such a system can develop false
messages about a defect, and, in order to reduce their
probability, it is highly desirable to “retrain” the sys-
tem against the verified data measured in the diag-
nosed equipment during a selected certain period of
operation with known defects (hereinafter referred to
as the training on a period).

The method described in this paper is intended for
diagnosing process equipment in power units' equip-
ment that have individual measurement instruments,
which, on the one hand, can directly diagnose the
occurrence of defects/malfunctions, but, on the other
hand, cannot detect defects in the early stages of their
development and also when these defects do not man-
ifest themselves all in individual measurements until
an accident occurs. The method gives a chance for
early detection of defects by analyzing both the mea-
sured parameters themselves in their totality and the
statistical derivatives of these parameters. In a particu-
lar case, the method does not require the mandatory
availability of verified DPE periods with known faults
or defects, i.e., learning may be carried out only
against the normal periods of DPE operation. Check-
ing the model for adequacy with this approach consists
in the fact that the abnormality criterion resulting
from the model testing against another (nonlearning)
period of normal operation should be within the spec-
ified settings, i.e., should not give false positive predic-
tions of abnormality.

FORMULATION OF THE PROBLEM

Initial data are archives of firmware complexes of
automatic control systems of power units that store
data arrays for a long period of operation of DPE:

 where  is the vector of
indicators at the time moment t;  are the
indicators of DPE operation at the time moment t;
and m is the number of these indicators. In what fol-
lows, by the indicators of DPE functioning, we mean
not only individual measurements but also their statis-
tical derivatives (average values over a period, vari-
ances, correlation functions, etc.). Vectors 
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taken at time moments  (r = 1, 2, …), form points in
the m-dimensional space. In addition, a finite set of
precedents (accidents, failures, defects) is given, each
of which can be classified, i.e., attributed to a certain
type of DPE defect. Each precedent is assigned a time
stamp of its detection,  and  is the time moments
of detection of the ith precedent of class (defect type)
j (j = 1, …, l; l in the number of classes; i = 1, …, k; k is
the number of precedents in class j).

We may assume that the domain of space with the
points of normal functioning of DPE differs from the
domains of space that are formed by the points of
functioning of the same object in the periods of time
that coincide with the time moments of precedent
occurrence,  just as domains of the precedent space
belonging to different classes differ from each other.
Moreover, for the process equipment of power units, it
is quite reasonable to consider these sets to be linearly
separable. The period of equipment operation of
equipment with a duration from  to

 can be called a period of abnormal opera-
tion in class j. Here, is the period of time before
the precedent, when the presence of a developing
defect begins to affect the array of indicators of the
DPE functioning; is the period of time from the
occurrence of a precedent to the elimination of its
consequences.

The set of all available precedent descriptions is
called a training sample. It should be used to find gen-
eral dependencies enabling us to determine the abnor-
mal functioning of DPE with an indication of the class
of abnormality. In doing so, a generalized criterion of
abnormality, which offers the possibility of a prece-
dent to be determined with some certainty based on its
change, should be constructed.

CONSTRUCTION OF A MODEL
FOR THE GENERAL CASE

Let several sets from the n-dimensional Euclidean
space of indicators of the DPE state be given. Each
point of this space is formed by the values of the indi-
cators obtained at certain time intervals. The first set
of points was composed in the period when the equip-
ment was healthy. Other sets are formed during peri-
ods of abnormal operation of the equipment opera-
tion, and each of them is associated with a certain type
of abnormality characterizing a specific failure. The
sets of normal and abnormal functioning are subse-
quently called base sets. Figure 1 shows the distance in
the two-dimensional space (Р1 and Р2 are the first and
second coordinates of the vector) from the point of the
process at the current time moment t to the points of
the subsets of normal (subscript “norm”) and abnor-
mal (subscripts “a1” and “a2”) functioning of DPE;
Nnorm, Mа1, Mа2 are the number of points in the subsets
of normal and abnormal functioning of DPE, and the
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Fig. 1. Space of equipment functioning parameters. Train-
ing set—points of the subset of DPE functioning: 1—nor-
mal; 2—abnormal with type 1 defect; 3—abnormal with
type 2 defect. Dashed curves illustrated the linear separa-
tion of the normal and abnormal regions.
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values of Nnorm, Mа1, Mа2 correspond to the duration of
the normal and abnormal operation periods.

Each point from the base sets can be associated
with a function similar in form to the electric poten-
tial, i.e., having a maximum at this point and decreas-
ing in all directions from it (thus, the point will appear
as if it were a source of potential). For example, such a
function may be,

where W is the weight of a point; R is the distance
between the source point and the point at which the
potential is calculated, which is calculated by the for-
mula

here  is the ith coordinate (DPE attribute) of the
tth point of the m-dimensional set (points at a time
moment t) with reference to which potential  of a
point with coordinates  is determined.

The value of function  at each point of the
space can be considered a measure of the proximity of
this point to a source point.

Let the sources be the points of the space of normal
functioning. Then the average potential created at a
given point of the space by all points, i.e., the total
potential divided by the number of points (potential of
normal functioning) will characterize the proximity of
this point to the entire overall base set:
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Similarly, the potentials of the jth base set can be
determined at the same point of the space, where j =
1, …, l is the type of a failure (l is the number of failure
types (classes of defects) in the training sample):

Here,  is the number of points forming the base set
of abnormal operation with a Class j defect.

Since the sets of normal and abnormal functioning
are assumed to be linearly separable in the calculation,
it will be natural to place the point in the base set
whose potential at this point is the greatest.

However, as already noted, it is extremely difficult
to obtain data on abnormal classes, and it cannot be
done at all in most cases. Therefore, a modification to
the stated general approach will be considered below,
namely, the construction of a model based on the data
only for the normal operation period.

CONSTRUCTION OF A MODEL
BASED ON THE DATA ONLY 

FOR THE NORMAL OPERATION PERIOD
In this particular case, there is only one basic set,

i.e., the set of normal functioning  with the num-
ber of points Nnorm. The learning algorithm is then
modified as follows. For each kth point of the base set,
where  the average potential of this
point with reference to the rest  points should
be calculated by the formula

where    is the distance from
the tth to kth point. 

Then, the minimal potential of the base set Nnorm is
calculated

In the run-time mode, the potential at each new
time moment will then be determined by the following
formula:

where t is the current time moment in time and is
the distance from the point formed by the values of
indicators at the current time moment t to the kth
point in the training period.

At this point, the construction of the model can be
considered finished. If it now turns out that the poten-
tial for the points formed by the current values
of DPE parameters with reference to the points of the
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training set is less than the value of ϕmin, we can
assume that the DPE has entered the abnormal func-
tioning zone. By monitoring the tendency for a further
decrease in  we can predict the risk of an acci-
dent. The calculated potential varies within (1, 0) and,
in fact, is a criterion for abnormality.

When using the model in practice, it is possible to
set the potential threshold setting and such a time
period Ta that, if  for a period of
time longer than Ta, an alarm will be triggered (Δa is
the maximum allowable decrease in the conditional
potential). After that, a process engineer must assess
the adequacy the model behavior and, if the prediction
and the actual state of DPE coincide, take necessary
measures to eliminate the failure. Should the model
prediction be false, then the model should be retrained
by expanding the space of normal operation by adding
new points to it.

ALGORITHM FOR THE CALCULATION
OF THE CRITERION FOR ABNORMALITY 

OF DPE OPERATION
Since the proposed method features a computa-

tional load increasing exponentially with an increase
in the number of points in the base set, we have to
impose limits on their number without losing the
points that control the configuration of this set.

Formation of the Base Set of Points 
in the Space of Indicators

1. Assume that Nnorm is the total number of points
(time moments) derived from the archived data in the
period of normal operation of DPE (set ).

2. NF is the number of points in the specified
period, which have no unreliable indicators (see below
the section Accounting for unreliability).

3. NL is the limiting number of points at which all
calculations required by the method are completed
within an acceptable time.

4. m is the number of indicators (coordinates of the
base set space), m << NL.

Then:
if  the base set is identical to the set of

archived data on normal functioning of DPE;
Otherwise, the base set should be formed as follows

to include in it
1. All points of the set  having

, i.e., the minimal value of the coor-
dinate (indicator)  of all  points in the set

 i = 1, …, m.
2. All points of the set  having

, i.e., the maximum value of the
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coordinate (indicator)  of all  points in the set
 i = 1, …, m;

3. Of the remaining  points, we should
take additional points at equal intervals of

 to increase their number to 

The final number of points in the base set can be
denoted by  Then it follows from the above-men-
tioned that

Determining Weights W(t)
The weight is an attribute of a point, i.e., an attri-

bute of each of the time moments of the base set. It
seems reasonable to give greater weight to those time
moments at which normal operation can be assumed
with a higher degree of confidence than at other points
in the historical data record. These can be, for exam-
ple, the periods of DPE operation immediately after
the repair.

Developing Indicators
The indicators that characterize the functioning of

DPE are, first of all, measured parameters of the DPE.
To enhance the ability to capture the effects of

abnormal functioning of DPE, it is possible to supple-
ment the list of indicators with derivatives of the mea-
sured parameters, for example, their variances  It
is assumed that such an extension may be useful when
a developing defect initially affects not so much the
parameters themselves or their combination but their
variability:

where  Here,  is the width of

the window for determining the statistical characteris-
tics of the time series; t is- the discrete time moments
at which the values of DPE indicators are recorded.
The width of the window can be chosen as equal to the
longest period in the spectrum of f luctuations of the
DPE parameters on a daily segment of the stationary
mode in the normal period of DPE operation, for
example,  = 8 h.

The values of certain parameters are kept at their
setpoints by the action of automatic control systems.
In this case, with the development of a defect that the-
oretically affects such a parameter, in a fairly wide
range, the parameter proper will not change signifi-
cantly. However, the position of the control element,
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which keeps this parameter at the setpoint, will
change. This means that it is advisable to include the
readings of the position indicators of the regulators in
the list of DPE indicators.

Filtering of Interference by Averaging over an Interval
The time series of indicators of DPE functioning

are known in the form of a discrete series of values
taken at regular intervals.

In statistics, there are three components of a time
series: trend, seasonal f luctuations, and random com-
ponent. To solve this problem, it is the trend that is of
interest, and the random component is harmful noise,
which should be filtered by averaging over the interval,
while seasonal f luctuations for most features can
hardly be found.

Averaging the indicator over a time interval:

Here,  is the averaging interval; i = 1, …, m is the
number of indicators. 

Since data in the archives of the firmware complex
of the automatic process control system are stored with
discreteness in time, the integral is, in fact, the sum of
the values of each indicator.

The value of  is determined by the period of
interference in the frequency spectrum of time series
of process parameters. Based on the available archive
data, it seems reasonable to assume  = 10 min.

Normalizing Data Samples
The need to normalize data samples stems from the

different nature of the applicable indicators, which
can vary in a wide range and, being diverse in physical
meaning, differ from one another by several orders of
magnitude. For example, the temperature is expressed
in three digits, while the pressure difference can be
expressed in one digit.

The operation of models with such indicators will
be incorrect since the imbalance among the values of
indicators can lead to completely inadequate results.

When calculating the distances between points or
vectors in practice, Z-scaling of the coordinates of
these vectors is most often used:

where

( ) ( )

( ) ( )
−

= = …

= >

for 1, , ;

1 d for .
m

ml i
t

ml i
m t T

P t P t t T

P t P t t t T
T

mT

mT

mT

( ) ( ) ( )−
= av ,i i

l
i

P t P t
P t

D

( )
=

= av 1
1 ;BN

i ii
B

P P t
N

THERMAL ENGINEERING  Vol. 68  No. 10  2021
 is the total number of points of the base set;
 

The normalization reduces all the numerical values
of the input indicators to the same range of their vari-
ation, i.e., to a certain narrow range. This enables
them to be brought together in a single model and
ensures proper operation of computational algorithms.

Considering the Unreliability of Measurements
Construction of an adequate model requires that

unreliable measurements be filtered out using one or
another method. Since all modern firmware systems
used as data sources for any predictive model provide
information not only about the values of measured
parameters but also about their reliability (so-called
validity bit), then unreliable values can be processed
using this information thereby avoiding learning
errors if these measurements belong to the training
period (base set), or false predictions, when these
measurements and the DPE performance indicators
based on them are taken when the model is running
in run-time mode.

When forming the base set, all the points whose
coordinates includes at least one unreliable indicator,
are rejected.

When using the model in the run-time mode, the
best solution is to replace the value of an unreliable
parameter with its last valid value.

RESULTS OF EXPERIMENTAL STUDIES
To improve the model sensitivity and find the pro-

cess assembly with a developing defect, the entire set
of taken measurements was divided into groups in
accordance with the technology.

The experimental studies were carried out on his-
torical data on the operation of a gas turbine unit
(GTU) recorded over 3 years. At each time moment,
with an interval of Δt = 10 min, m = 45 indicators of
the GTU functioning (including active power, bearing
vibration, temperature of bearing white metal, etc.)
were recorded with an interval of Δt = 10 min. Figure 2
shows a fragment of the initial data.

The dependence of the calculated criterion ϕ for
abnormality of the gas turbine’s operation (curve 1) is
presented in Fig. 3. The horizontal line indicates the
minimum value of potential obtained in learning the
model. Based on the expert opinion and the assess-
ment of each individual measurement, one more
period of normal equipment operation was selected as
the test period. It follows from Fig. 3 that the abnor-
mality indicator diagnoses the normal state of the
studied object during the test period of operation.
Thus, in the test period, the developed method
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Fig. 2. Gas turbine performance in the period between February 25, 2013, and March 15, 2013, characterized by process engineers
as a period of normal functioning. 1—Bearing temperature θb; 2—bearing relative vibration Vb; 3—GTU active power . 
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demonstrates consistent results of determining the
normal or abnormal functioning of DPE.

CONCLUSIONS
(1) The proposed method featuring simplicity and

clarity has demonstrated the adequacy and consis-
tency of the results of determining the normal or
abnormal functioning of DPE based on the available
archived data.

(2) Should appropriate initial (archive) data on
recorded failures in DPE be available, the model can
be trained to search for them. However, even in the
absence of information sufficient to train the model to
search for specific failures (which is almost always the
case for all power units), the model can be used suc-
cessfully having been trained only against the data
obtained during normal operation of DPE.

(3) The disadvantages of the method include expo-
nentially increasing computational complexity as the
training data array increases. However, this problem is
present in almost all available predictive analytics mod-
els, and this paper proposes a method for solving it.

(4) The presented method, as all other predictive
analytics methods used for diagnostics of process
equipment, is general with respect to the type of this
equipment. The only condition is that the equipment
must have a number of measured parameters that
THERMAL ENGINEERING  Vol. 68  No. 10  2021



MODEL OF EMERGENCY CONDITIONS’ EARLY DETECTION 769
characterize the equipment operation and are suffi-
cient for diagnostics.

(5) The proposed method requires additional test-
ing against other archive samples containing (that is
desirable) the period of abnormal operation verified
by an expert in both offline and online modes on the
current data, optimization of the training dataset,
improvement of predicting the time to attain the
preemergency and emergency technical state, and
determination of probabilistic estimates of the fact of
the occurrence and development of a defect in time.
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